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Abstract. The non-linear Fokker-Planck equation is used to study the non-equilibrium 
concentration of a two-step chemical reaction. The non-linearities are systematically 
approximated and the concentration time correlation function is calculated analytically 
for two reaction schemes, with and without detailed balance, respectively. The correspond- 
ing structure factors are also calculated and it is found that they exhibit the same basic 
Lorentzian structure. The relation of our results to other work is also mentioned. 

1. Introduction 

Renewed interest in the characterisation of non-equilibrium steady states (NESS) and 
the behaviour of fluctuations about them has increased recently, especially in connec- 
tion with the description of systems such as fluids supporting flows [ 1,2] or chemical 
reactions [3-51. 

Owing to the great diversity of properties that a NESS may exhibit, its proper 
description is far more difficult than for an equilibrium state. However, for the special 
case of NESS obeying the detailed balance (DB) condition, a number of thermodynamic 
properties usually connected with equilibrium or near-equilibrium states may also be 
applied. The property of detailed balance reflects on a macroscopic level the time 
reversal invariance of the microscopic equations of motion and it may be expressed 
in a variety of equivalent forms [6-81. Here, we only consider systems whose stochastic 
dynamics may be described by the non-linear Fokker-Planck equation ( NFPE), namely 

where q stands for a set of stochastic variables. 
For a process described by this equation DB is expressed by the symmetry relations 

PO(d = PO(@) (1.2a) 

P(q ,  t ;  qO)PO(qO)  = P(G0, t ;  @)PO(@) (1.26) 

where P ( q ,  t ;  qo) is the conditional probability density of the variables q, which for 
convenience are separated into even and odd ones q"+  G" E "q" with E' = f l ,  -1, 
respectively, with respect to time reversal. The function Po( q )  is the time-independent 
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solution of equation (1.1) and it is assumed to be unique. When DB holds, the stationary 
solution of equation (1.1) may be found and used to define a generalised thermodynamic 
potential which allows one to assess the stability conditions on the solution. 

On the other hand, for many non-equilibrium states the absence of DB is a typical 
non-linear effect. For instance, the non-linearities in equation (1.1) frequently induce 
non-linear couplings among the variables { q } ,  which in turn may lead to the breakdown 
of DB [9, 101. Since, as indicated in equation (1.2), DB involves the full conditional 
probability density, it is to be expected that the non-equilibrium properties of the 
system will be affected by the presence or absence of DB. The purpose of this paper 
is twofold: firstly, to calculate analytically the concentration-correlation function and 
the corresponding structure factor for a two-step chemical reaction describable by 
equation (1.1). Secondly, to investigate how the presence or absence of DB affects the 
features of this measurable property of the reacting system. We find that, within our 
approximations of the non-linearities of the NFPE, the basic and rather simple structure 
of the spectra is not modified by the presence or absence of DB; in both cases the 
spectrum is a simple Lorentzian. 

To this end, in the next section we calculate analytically the steady state concentra- 
tion correlation function for both the reversible and irreversible chemical reaction 
schemes. This is accomplished by systematically truncating the hierarchy of moments 
of the conditional probability up to second-order cumulants. The validity of the 
approximations involved in this procedure is assessed by calculating the same quantities 
numerically. Then in 0 3 we obtain the corresponding spectral densities and the 
structure factors. 

2. The concentration correlation function 

2.1. The irreversible case 

Consider the following chemical reaction scheme which does not obey detailed 
balance [ 111, 

(2.1) 
k k2 A - X  2 X  - E. 

We assume that the amount of A is kept constant by appropriate feeding of the 
reactor and that E is eliminated instantaneously. The corresponding macroscopic rate 
equation is 

dx( t ) /d t=  k1a-2k2x2(t) (2.2) 

where we have introduced the concentrations x = X/ V and a = A/ V, associated with 
species X and A, respectively, and V is the volume where the reaction takes place. 
Equation (2.1) generates the single steady state 

x, = (k,a/2k2)'j2. (2.3) 

It has been shown by Horsthemke and Brenig [ 121 that the above two-step chemical 
reaction may be described from a stochastic point of view by the following NFPE: 
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Here x denotes the fluctuating concentration and the drift and diffusion coefficients 
are given, respectively, by 

K (x)  = k ,  a + 2k2x/ V - 2k2x2 ( 2 . 5 ~ )  

D(x)  = (kla+4k2X2)/2V. (2.5b) 

At this point is is worth emphasising that, although the DB condition may be 
expressed in a variety of equivalent forms, for a multivariate NFPE it may be stated as 
a relation between the drift and diffusion coefficients, namely [9] 

where P o ( q )  stands for the equilibrium distribution function and the q represents the 
set of stochastic variables. It is easy to verify that equation (2.4) does not fulfil condition 
(2.6) and therefore it does not obey DB. 

The stationary solution of equation (2.4) is given by [2] 

~ " ( x )  = + ( X I  exp[- VX+$/~VX, tan- '(f ix/x,)]  (2.7) 

+(x)  = N ( l  + 2 x 2 / x y 2  (2.8) 

with 

where x, is given by equation (2.3) and N is a normalisation constant. 
As mentioned in the introduction, we are interested in evaluating the concentration 

correlation function for the stationary state defined by equation (2.7). This correlation 
function is defined in general as 

C ( t )  = (xo(x(t)),),t --(xo)st((x(~)),)st (2.9) 
where xo = x(0) is the initial concentration value. Here the notation indicates the 
following: take a certain xo, calculate the average value (x( t ) )  conditional on the given 
xo; then multiply this conditional average by xo and average over the values of xo as 
they occur in the state under consideration. Thus, the main task is to calculate the 
conditional average. For this purpose from equations (2.4) and (2.5) we obtain the 
following coupled set of equations for the first three conditional moments of P(x, t ) ?  

d(x)/dt= kla+(2k,/ V)(x)-2k2(x2) (2.10) 

d(X2)/d t = (k, /  V) U + 2k1 U(X)  + 8( k2/ V)( X) - 4k2(x3) (2.11) 

d(x3)/dt = 3( k l /  V)a(x) + 3k,a(x2) + l8 (  k2/ V)(x3) - 6k2(x4). (2.12) 

The first two equations may be decoupled by expanding (x') in a Taylor series around 
(4: 

(2.13) 

and then neglecting the last term since it can be systematically shown always to be of 
higher order than the first two [13]. Furthermore, if we also take the thermodynamic 
limit, the equations for the first two moments of P(x, t )  become 

b') = w ' +  3((x - (X>)2>(x) + ( (x  - (x))') 

(2.14) 

(2.15) 

t For simplicity of notation, from here on we omit the subscript x, in the conditional moments. 
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According to equation (2.9), C ( t )  will be finite if (x(t))  is finite as well and this, 
in turn, implies that the solution to the above set of equations should be stable. It can 
be shown that the singular points associated with equations (2.14) and (2.15) in the 
space spanned by (x) and (xz) are a stable nodal point Q1(xs, xf) ,  a saddle point 
Q2(0, XI) and an unstable nodal point Q3( -x,, xf). Therefore, in the neighbourhood 
of Q1 the solutions of the above equations are stable. Then a small alteration of the 
initial value x,, changes their value to a different one that remains in the vicinity of 
the original value. Hence the fluctuations in x are expected to be small and finite 
around Q1 and C ( t )  is well defined for any value of the positive parameters k , ,  k, 
and a. On the other hand, in the neighbourhood of Q2,  Q3, a continually acting 
perturbation will have a cumulative effect, resulting in a continuous drift of the solution 
from one value to another. In this paper we approximate the above equations for the 
moments only in the vicinity of 9,. Hence equations (2.11) and (2.12) may be rewritten 
as the single second-order equation 

(1/2kz) dZ(x ) /d tZ+6(~)  d(x)/dt = 4k,u(x)-8k,(~)~.  (2.16) 

Although it is difficult to solve this equation analytically owing to its non-linear 
character, we can always obtain an exact numerical solution; in figure 1 we have plotted 
the fourth-order Runge-Kutta solution for k ,  = 1, k2 = 1 and a = 1 with different initial 
conditions. However, some insight into the behaviour of its solution may be gained 
by considering the special case when kz >> 1. Under this approximation equation (2.16) 
reduces to 

d(x)/dt = i k , a  - ! k z ( ~ ) ~  

whose solution is 

(x(t))  = xs( l+  6 e P r ) / ( l  - 6 e-ar) 

(2.17) 

(2.18) 

I 

0 1.9  
f 

Figure 1. The fourth-order Runge-Kutta solution (-) of equation (2.14) and (2.15) as 
a function of time, when k ,  = 1 ,  k ,  = 1 and a = 1.  Each curve corresponds to different 
initial conditions. The broken lines represent the analytical overdamped solution of 
equation (2.16) for the same initial conditions as before. 
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where x,  is given by equation ( 2 . 3 )  and 

6 = (xo - xs)/  (xs + xo) ( 2 . 1 9 ~ )  

a =$(2k,k ,a)"* .  ( 2 . 1 9 b )  

Notice that 0 < 6 < 1 and that as t + CO, ( x (  f ) )  reduces to x, .  Also, if t + 0, ( x (  t ) )  + xo 
as expected. 

The approximate analytic solution (2 .18)  is very close to the numerical one for all 
times and become asymptotically identical; in figure 1 we have also plotted this 
overdamped solution for the same parameters and initial conditions as before. It must 
be remarked that this analytical approximation is good for 'large times' even when 
k 2 =  1 .  

Using equations (2 .18)  and (2 .19)  we find that the concentration correlation function 
in the stationary state is given by 
C " ( t )  = ( x o x s ( l + 6  e -e f ) / ( l  - 6 

Now, since the stationary average of an arbitrary function x may be calculated from 
equation (A6), after some tedious but straightforward algebra we arrive at 

- ( x o + 1 / 8 V ) ( x , ( 1 + 6  e-" ') /( l-6 e-u'))st. (2 .20)  

c " ( ~ ) = ~ [ ( x , / v )  e x p ( - a t ) ] + 0 ( 1 / ~ ~ ) .  (2 .21)  

It is worth emphasising that the distribution of the initial values xo appearing in 
equation (2 .20)  is, in principle, completely arbitrary. For instance, if initially there 
were exactly xo molecules of x, all the quantities in the last equation are just numbers. 
However, due to inaccuracies in weighting, etc, one obtains a distribution about some 
initial concentration which in general would be Gaussian. For large systems this 
distribution can be conveniently approximated by a binomial distribution: 

prob(x(0) = r }  = ( " ) p ' ( l  -p)"- '  r = O ,  1 , 2 , .  . ., n (2 .22)  
r 

with mean m and variance U given by 

m = np U = np( 1 - p )  (2 .23)  
where p is the probability for success of a single event. 

To study the effect of varying p for fixed xo, i.e. the effect of various degrees of 
inaccuracy of the determination of the initial conditions, we may adjust n simul- 
taneously with p so that the product np = x is constant. In this form as p approaches 
unity the initial conditions are better determined and the coefficients in equation (2 .21)  
are numbers depending on the initial value xo. From the concentration correlation 
(2 .21)  we can derive the corresponding spectral density and the structure factor as will 
be shown in Q 3 .  

2.2. The reversible case 

We now consider the following reversible reaction system 
k ,  k2 

A e X  2 X  e E 
ki ki 

(2 .24)  

where A and E are kept constant by suitable reservoirs and k ;  and k ;  stand for the 
backward reaction constants. The macroscopic rate equation is now 

dx( t ) /d t=  k,a  - k ; x ( r ) - 2 k , x 2 ( t ) + 2 k : e  (2 .25)  



2720 L Vicente, R F Rodriguez and F Soto 

where e = E /  V is the concentration associated with species E. The stationary solution 
of this equation is 

(2 .26)  

where we have chosen the positive solution since the concentration should always be 
positive. Following the prescription given by Horsthemke and Brenig [ 121 to construct 
the NFPE associated with (2 .24) ,  we find that the drift and diffusion coefficients are, 
respectively, 

x ,  = ( 1 / 4 k , ) [  - k :  + ( k;’ + 8 k l  k2a + 16 k2k;e)”’] 

k ( x )  = k , a  + 2k;e + ( 2 k 2 x /  V )  - k : x  - 2k2x’ (2 .27)  

D ( x ) =  ( k , a + 4 k ; e +  k i x + 4 k 2 x 2 ) / 4 V .  (2 .28)  

We can show that, indeed, these coefficients satisfy the detailed balance condition 
(2 .6) ,  which is the mesoscopic expression of the reversibility of scheme (2 .24) .  

As before, from the corresponding NFPE we can obtain a coupled system of equations 
for the successive moments of the distribution function P ( x ,  t ) .  Again this set of 
equations may be decoupled by using the same approximation (2 .13)  and by taking 
the thermodynamic limit. This leads to 

d(x)/dt = k 1 a + 2 k ; e -  k : ( x ) - 2 k 2 ( x )  ( 2 . 2 9 a )  

d(x2)/dt = ( 2  k ,  a + 4 k ;  e ) ( x )  - 2 k : ( x 2 )  - 12 k2(x)(  x’) + 8 k , ( ~ ) ~ .  (2 .29b)  

As in the irreversible scheme, it can be shown that the singular points associated 
with equations (2 .29)  in the space spanned by ( x )  and (x’) are a stable nodal point, a 
saddle point and an unstable nodal point. Our analysis would be limited to the stable 
point since it is the only one accessible from the physical point of view. In figure 2 
we show the fourth-order Runge-Kutta solution of system (2 .29)  for k ,  = 1, k ,  = 1, 
k ;  = 1 ,  k ;  = 1 ,  a = 1 and e = 1, and for several initial conditions. 

t 

Figure 2. The fourth-order Runge-Kutta solution (-) of equations (2.29) as a function 
of time, when k, = 1 ,  k, = 1, k: = 1, k; = 1, a = 1 and e = 1. Each curve corresponds to 
different initial conditions. (- - -) refers to the analytical overdamped solution of equation 
(2.30) for the same initial conditions as before. 
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For the purpose of obtaining an approximate analytic solution we rewrite these 
equations as 

1 d2(x) 3 ki d(x) d(x) -- +- - - + + ( x ) -  
2k2 dt2 2 k2 d t  d t  

= - ki ( a k ,  + 2ek;) + ( 4 k ,  a + 8 k ie  - ki2/ k2)( x )  - 6k;(x)’ - 8 k 2 ( ~ ) 3  (2.30) 
k2 

and, as in 0 2.1, we consider the case where k2 is large but assuming that k; is also 
large. Thus, for a given initial value x = ( x ( 0 ) )  the general solution of the resulting 
approximate equation is 

(2.31) 

where now x, is given by equation (2.26) and 

x ;  = ( 1/4k2)[ - k ;  - ( ki2 + 8 k ,  h a  + l6k2k;e)”’] 

E = ( x ,  - x o ) / ( x ;  - xo) 

p = !k2( X ,  - x ; ) .  

(2 .32~)  

(2.32b) 

(2 .32~)  

The approximate analytic solution (2.31) is very close to the numerical one for all 
times and become asymptotically identical; in figure 2 we have plotted them for the 
same values of the parameters and for the same initial conditions. As in the irreversible 
case, it must be pointed out that the overdamped solution is also fairly good when 
k2 = ki = 1 and the time is ‘long enough’. 

Following the same procedure that led us to equation (2.19), we obtain a concentra- 
tion correlation function with exactly the same structure as (2.19), but with a x, given 
by equation (2.26) instead of (2.3). Then, from equation (A7) we explicitly obtain 

Cst(t)=(A,/4V) exp( -p t )+o(1 /~ ’ )  (2.33) 

where A ,  is a constant (see equation (A8a)). 

3. The structure factor 

From the concentration correlation expressions of the previous section, we now derive 
the corresponding spectral densities. The latter are obtained from the former through 
the Wiener-Khinchine theorem [ 141 

S(O) =L ll lom c ( t )  COS ut dt. (3.1) 

Using equations (2.21) and (2.33) 

CS‘ y 
S(6J)=- - 

ll y 2 + J  

where 

CSt = ixs /  v and y=CY 
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for the irreversible case, and where 

Csi = h 1 / 2  V and y = P  (3.4) 

for the reversible one. 
Clearly the structure of both spectra is the same but the amplitude and width of 

the Lorentzians are different. It should also be mentioned that this result of a Lorentzian 
contribution to the spectrum is in agreement with the results of Bloomfield and Benbasat 
[ 151 obtained using a different approach. 

4. Concluding remarks 

A two-step chemical reaction has been studied by means of a NFPE. The method used 
to calculate the steady state concentration fluctuations is based on the stability proper- 
ties of the singular points for the system of equations for the first moments. An 
important feature of the method is that the approximations involved in the truncation 
of the hierarchy of equations for the moments are systematic. That is, they may be 
shown to be equivalent to an expansion in terms of a small parameter of the system [ 131. 

The analysis of the preceding sections also showed that for both the reversible and 
irreversible reaction schemes, the fluctuations spectra are Lorentzian; a result which 
is not obvious a priori. This result clearly suggests that the influence of detailed balance 
on the structure of the spectra is negligible within the approximations used. This lack 
of influence may be due to different reasons: for instance, to the thermodynamic limit 
approximation used which has the effect of scaling down the amplitude of the fluctu- 
ations. It may also be a consequence of the truncation of the hierarchy of moments 
of P ( x ,  t ) ,  introduced in § 2 in order to make the problem tractable. Since, as indicated 
in equation ( l . l ) ,  detailed balance involves the full distribution function, the truncation 
has the effect of approximating P ( x ,  t )  by its lower order moments only. This in turn 
eliminates many of the non-linear features of the system and, presumably, also the 
influence of detailed balance. This indicates the necessity of better approximations of 
the NFPE. 

It is worth pointing out that similar conclusions concerning the lack of influence 
of detailed balance on a macroscopic measurable property of a fluid have been obtained 
from a kinetic analysis based on the Boltzmann equation [16]. 
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Appendix 

In this appendix we calculate the correlation function C ( t ) ,  equation (2.9), of the 
reduced concentration x, 

C ( t )  = (xo(x(t))xJ,t -(xo),t((x(t)),),t. 

We treat the reversible scheme only and, at the end, we obtain the irreversible one as 
a particular case. We proceed in two steps: firstly we derive an approximate expression 
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for the stationary mean value of an arbitrary function of the reduced concentration 
and, secondly, we apply this expression to equation (2.9) with the solution (2.31). 

Let $(x) be an arbitrary, but rather regular, function of the reduced concentration 
x. Its stationary mean value is defined as 

($(XI> = lom $(X)P"'(X) dx. 

The stationary solution of equation (2.4) is given by 

Using expressions (2.27) and (2.28) and after a straightforward, but very tedious, 
integration one finds the following explicit expression for the stationary probability 
density: 

P"(X) = 4 ( x )  exp( Vf(X)) (A3) 
where 

(A4) kl 
4 k2 B2 8 k2 

tan-'(B,/B2)--1n(2VD(x)) B3 f(x)  = -x+- 

and 

Here D(x)  is the diffusion coefficient (equation (2.28)), N is the normalisation constant 
and B1, B2 and B3 are given by 

B i z  k; + 8 k . 2 ~  M a )  

B2= (16klk,a+64k,kSe- k:2)1'2 (A6b) 
B3 = ki2 + 24 k, k2a + 64 k, k; e. (A6c) 

It is not very difficult to show that the stationary reduced concentration x,, equation 
(2.26), is a saddle point of f ( x ) .  Then, we can use the method of steepest descent 
[17,18] to solve (Al)  up to order 1/ V ,  obtaining 

($(XI)= $(~ , )+(1 /4V)[~l+"(x , )  + ~ 2 + ' ( ~ , ) 1 + 0 ( 1 /  V2) ('47) 

A1 = -2/f(x,) (A8a) 

where 

Applying formula (A6) we find the stationary mean value of the reduced concentra- 
tion x 

(A9) 

('410) 

( X) = x, + A2/ 4 V 

the stationary correlation function 

C = ( x ~ ) - ( x ) ~  = AJ2V 
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and, using the solution (2.3 l) ,  the time-dependent correlation function 

c(t) = (Al/2V) exp(-pt) ( A l l )  

where /3 is given by (2.32). 
We remark that, although A I  and A 2  are constants, their explicit expressions are, 

in the general case, very cumbersome. However, in the irreversible scheme, which is 
obtained by taking k: = 0, ki = 0 and e = 0, one finds 

and A*=;.  ('412) -1 
1 - 2% 
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